
Discussion Graphs: Putting Social Media Analysis in Context
Emre Kıcıman, Scott Counts, Michael Gamon

Microsoft Research
{emrek, counts, mgamon}@microsoft.com

Munmun De Choudhury
School of Interactive Computing, Georgia Tech

mchoudhu@cc.gatech.edu

Bo Thiesson
Dept. of Computer Science, Aalborg University

thiesson@cs.aau.dk

Abstract

Much research has focused on studying complex phenom-
ena through their reflection in social media, from drawing
neighborhood boundaries to inferring relationships between
medicines and diseases. While it is generally recognized in
the social sciences that such studies should be conditioned
on gender, time and other confounding factors, few of the
studies that attempt to extract information from social me-
dia actually condition on such factors due to the difficulty in
extracting these factors from naturalistic data and the added
complexity of including them in analyses. In this paper, we
present a simple framework for specifying and implementing
common social media analyses that makes it trivial to inspect
and condition on contextual information. Our data model—
discussion graphs—captures both the structural features of
relationships inferred from social media as well as the con-
text of the discussions from which they are derived, such as
who is participating in the discussions, when and where the
discussions are occurring, and what else is being discussed
in conjunction. We implement our framework in a tool called
DGT , and present case studies on its use. In particular, we
show how analyses of neighborhoods and their boundaries
based on geo-located social media data can have drastically
varying results when conditioned on gender and time.

1 Introduction
Social media data have shown themselves to be a rich source
of information about phenomena in a large variety of do-
mains, from public health and politics to economics and
urban informatics. In the health domain, for example, re-
searchers learn potential relationships between drugs and
their symptoms and side-effects based on the co-mentions
of drug names and ailments in Twitter messages (Paul and
Dredze 2011), and study disease transmission in the phys-
ical world by inferring transmission relationships between
infected people and others based on their co-visited loca-
tions (Sadilek, Kautz, and Silenzio 2012). To study the de-
velopment and growth of online communities in the context
of the Mexican drug war, Monroy-Hernandez et al. study the
co-occurrence relationship among hashtags and user behav-
iors (Monroy-Hernández et al. 2013). Cranshaw et al. extract
relationships between locations based on co-visits by the
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same users to learn community and neighborhood bound-
aries in the real-world (Cranshaw et al. 2012).

Critical to a thorough exploration of relationships inferred
from social media data is the context of the social media dis-
cussions from which relationships are extracted. Such con-
text may include a rich set of features, such as temporal,
spatial and topical context, as well as population, sentiment,
and domain-specific features. Such context provides insights
into the underlying phenomena and can suggest further lines
of investigation and action.

Unfortunately, the effort of implementing such deep anal-
yses around the context of social media is non-trivial. First,
given the breadth of technologies involved in extracting en-
tity, sentiment and other information from social media mes-
sages, simply finding the right models, algorithms and ex-
pertise in the first place can pose significant difficulty. Sec-
ond, even after low-level features have been extracted, ex-
tracting relationships between items and tracking the context
of the relationship requires a substantial programming effort
(hours or days) — an effort that, to a large-degree, must be
duplicated each time we extract a new kind of relationship
or condition on new contextual factors.

Our goal in this paper is to drastically simplify analysis
of social media data in context: to simplify the specification
and implementation of common analyses, to simplify the ex-
traction of conventionally important features such as gender
as well as new features such as sentiment, and to simplify
the conditioning of results on multiple kinds of context. Fur-
thermore, we wish to make it trivial to follow best practices
that improve our understanding of these extracted relation-
ships, such as summarizing the context of the discussions
from which they are extracted and tracking supporting evi-
dence. In this paper, we focus on co-occurrence analysis, a
large and important class of social media analyses, founded
on the assumption that frequently co-occurring items may
share some true relationship.

To this end, we present discussion graphs, a data model
for representing and computing upon the relationships ex-
tracted from social media. Informally, a discussion graph is
a hyper-graph representation of a set of relationships and
their associated contexts. Each node in our graph represents
some feature-value extracted from a social media corpus;
and each hyper-edge represents a unique context (whether a
specific social media message, location, time, etc.) that con-



nects all the feature-values that were found to co-occur in
the same context. Each hyper-edge is annotated with a sta-
tistical summary of the discussion context from which it was
derived. Simple operations on this discussion graph accom-
modate the wide-variety of domains to which co-occurrence
analyses of social media analysis has been applied today.

To give a simple hypothetical example, we might be inter-
ested in the relationship between drugs and side-effects, as
expressed in co-occurrence of drug and effect-related terms
in social messages. The possible conditioning context may
include gender and age of the messaging people. Our dis-
cussion graph model simplifies this kind of analysis by en-
abling us (1) to provide a framework for re-use of feature ex-
tractors for co-occurrence statistics and context extraction,
and by (2) allowing us to project the discussion graph to the
co-occurrence that we are interested in (drug↔ side effect)
while aggregating statistics about the contexts (gender and
age) for each relationship. To examine other conditioning
contexts, all we would need is a feature extractor for that
particular new context, and with a minimal change in our
analysis script we could add the new context to the aggre-
gate statistics around drug and side effect co-mentions.

We implement this data model in DGT (Discussion Graph
Tool), an easy-to-use analysis tool that provides a domain-
specific language for operating on discussion graphs and ex-
tracting co-occurrence relationships from social media, and
automates the onerous tasks of tracking the context of rela-
tionships and other best practices. DGT provides a single-
machine implementation, and also generates map-reduce-
like programs for distributed, scalable analyses. We have
used DGT for analyses supporting production features at a
large web service.

We demonstrate the applicability of discussion graphs
in examples and case studies across several domains, in-
cluding political discussions, relationships between activi-
ties and locations, and using context to interpret cliques of
co-mentioned locations. Ultimately, we believe the primary
impact of identifying a simplifying abstraction underneath
co-occurrence analyses is to enable and encourage deeper
analysis of social media, and especially the implications of
context for interpreting and understanding relationships.

Our final case study demonstrates how conditioning on
context can significantly alter the results of an analysis. We
look at neighborhood boundaries learned from social media
data, as in (Cranshaw et al. 2012), and find that conditioning
our analysis on different contexts (day vs. night, weekday
vs. weekend, male vs. female), substantially changes the in-
ferred shape of neighborhoods. The lesson we learn is that
the original context from which we learn relationships is
critical to the final result of high-level analyses. By simpli-
fying the process of extracting such contextual features and
conditioning on them, DGT makes such deep analyses of
dependencies feasible.

2 Background
In this section, we first discuss the goals and methodologies
of social media analysis research. Then we discuss how con-
ventional social sciences handle the conditioning of analyses

on critical context and the new challenges that arise in a so-
cial media context. Finally, we briefly discuss existing social
media analysis tools and how our work is complementary.

2.1 Social Media Analysis
Much social media research has focused on whether or not
certain relationships exist at all in social media, as well as
validating these relationships via juxtaposition with ground
truth data. In the health domain, studies have looked at the
relationships between diseases, medicines, side-effects, and
symptoms (Paul and Dredze 2011; Myslı́n et al. 2013) as
well as disease transmission (Sadilek, Kautz, and Silen-
zio 2012). Similar studies have been conducted in ur-
ban informatics (Cranshaw et al. 2012; Schwartz et al.
2013), mental health (De Choudhury, Counts, and Horvitz
2013b; Golder and Macy 2011), natural disaster monitor-
ing (De Longueville, Smith, and Luraschi 2009; Sakaki,
Okazaki, and Matsuo 2010), finance (Bollen, Mao, and Zeng
2011) and other domains. Surprisingly many of these analy-
ses rely on a co-occurrence analysis: the assumption is that
items that co-occur frequently may share some true relation-
ship. For example, Sadilek et al.’s analysis of disease conta-
gion infers relationships between disease carriers and new
infections based on co-visited locations. Paul and Dredze
studied the relationship between mentioned ailments and the
geographies in which they occur. Cranshaw et al. extract
the social similarity between locations based on co-visits by
individuals, inferring community and neighborhood bound-
aries (Cranshaw et al. 2012).

Given the many biases known to be present in social
media (Calais Guerra, Meira, and Cardie 2014; Kıcıman
2012), validation of information inferred from social me-
dia is critical. Many studies perform a validation by com-
parison with ground-truth data based on expensive conven-
tional surveys and study techniques (Schwartz et al. 2013;
De Choudhury, Counts, and Horvitz 2013b; Cranshaw et
al. 2012). However, validation is especially challenging in
cases where everyday behavior inferred from social media
is hard to capture in traditional survey and study methods.
This raises many questions around conditional factors: for
whom do the effects extracted from the data apply, in what
situations are the results valid, and so on. The need for easy,
rapid, iterative analysis and exploration of complex contex-
tual factors is the primary motivator for the formalization
and implementation of discussion graphs presented here.

Our work also has applicability to the large body of re-
search on improving computing and information systems.
For example, social media analysis methods have been used
in social search and ranking (Weng et al. 2010), recom-
mender systems (Konstas, Stathopoulos, and Jose 2009;
Feng and Wang 2012), media summarization (Lin et al.
2012), and so on. Smith et al., 2008 utilized personal so-
cial context (individuals and the communities they belong
to) and community social context (individuals’ information
role and identity in different communities) to facilitate pro-
ductive participation and search for users. Konstas et al.,
2009 combined explicit multimedia-enriched data and im-
plicit user preferences on last.fm to propose a virtual net-
work representation for a recommender system.



2.2 Conditioning on context: person and
environmental factors

Analyses in the social sciences often are conditioned on
demographic variables such as gender and socioeconomic
status. These variables are used as covariates to show that
the phenomenon of interest explains variance in the outcome
variable beyond what the demographic factors alone would
explain. Including these factors when analyzing naturalistic
data such as social media is challenging. As we show in our
case studies, the discussion graph framework can incorpo-
rate these variables into analyses of social media in a flexible
way. For instance, our second case study shows how neigh-
borhood boundaries drawn from social media posts differ for
men and women.

Social media do have advantages in that the set of vari-
ables analogous to demographics can both extend the set
of person variables on which to condition, as well as pro-
vide a set of environmental variables typically absent from
traditional social science analyses. For instance, variables
like time of day are almost always available in social me-
dia and can be used to condition results such as the neigh-
borhood boundary analysis shown in our third case study.
Further, many variables that require inference are available
based on text classification. Our first case study contrasts
mood distributions over seven mood classes for tourists and
locals in New York, highlighting a factor largely novel for
conditioning on in the social sciences. Thus by incorporat-
ing time, mood, and other contextual factors into the hyper-
graph representation of the data, the discussion graph frame-
work simplifies exploration of covariates, both traditional
and novel with respect to the social sciences.

2.3 Tools for Social Media Analysis
To perform social media analyses, researchers typically de-
pend on a broad stack of tools for text and graph analyses,
machine learning and statistical analyses. Textual and meta-
data analyses are often used for low-level feature extraction
such as entity recognition and sentiment analysis. Network
analysis tools, such as Gephi (Bastian, Heymann, and Ja-
comy 2009), NodeXL (Hansen, Shneiderman, and Smith
2010), and SNAP (Leskovec 2013) are available for com-
puting graph analyses on existing network data. Our work
complements these classes of existing tools by focusing on
extracting co-occurrence relationships of social media fea-
tures and turning this into a conditioned and contextualized
representation amenable for higher-level analyses.

The most similar research effort in motivation includes
Heer et al. (Heer and Perer 2011)’s Orion proposal for an in-
teractive network modeling and visualization tool, enabling
rapid manipulation of large graphs using relational opera-
tors and network analytics. Similarly, although not on so-
cial data, Liu et al. (Liu, Navathe, and Stasko 2011) devised
the Ploceus system that lets users analyze multivariate tabu-
lar data through network abstractions at different levels and
from different perspectives. Our paper builds in this direc-
tion and proposes an easy-to-use flexible framework to in-
gest, aggregate and manipulate social media features and
their co-occurrence analyses.

3 Discussion Graphs and DGT
In this section, we present our data model and implemen-
tation. We present a formal definition of discussion graphs
and the basic operations that support co-occurrence analysis
and ease the analysis of relationships in context. Based on
this, we define our domain-specific scripting language and
present a simple example program.

3.1 Discussion Graph Data Model
Informally, a discussion graph is a hyper-graph representa-
tion of a set of relationships and their associated contexts,
extracted from a social media corpus1. A hyper-graph is
similar to a graph, except that hyper-edges mutually connect
any number of nodes, whereas edges in a graph each connect
exactly two nodes. In a discussion graph, each hyper-edge
is annotated with a statistical representation of the original
context from which the hyper-edge was inferred 2.

Formally, a hyper-graph H = (N,E), where N is a set
of nodes and E is a set of distinct hyper-edges such that for
all e ∈ E, e ⊆ N . A discussion hyper-graph extends the
notion of a hyper-graph by explicitly defining statistics for
each hyper-edge in the graph. Hence, a discussion hyper-
graph

G = (N,E, S)

where S are the statistics associated with the edges in E —
one specific s ∈ S for each e ∈ E.

The domain D from which the discussion hyper-graph is
constructed becomes important when defining the basic op-
erations on the graph and can be thought of as the stochas-
tic variables for which values are encoded in the graph. We
will make this domain dependence explicit, by representing
a discussion hyper-graph as

GD = (ND, ED, SD),

Note that SD = ∅ for the initial discussion hyper-graph
In fact, SD will only involve statistics not associated with

any of the variables in the domain D.

3.2 Basic Operations
The computational pipeline for our framework has three
main stages. First, we apply a series of feature extractors
to a corpus of social media messages. The resultant features
create the base discussion graph. Each node in the discus-
sion graph corresponds to a distinct feature value, and each
hyper-edge corresponds to a social media message, connect-
ing all the feature values extracted from that message. Sec-
ond, we apply a set of transformations to the base discus-
sion graph. These operations set the relationship context, fil-
ter, project and augment the discussion graph to create a de-
rived graph representation of the co-occurrence relationships
among selected domains of interest.

1We use the term discussion graph instead of discussion hyper-
graph for brevity.

2Note that while annotations are applied only to hyper-edges,
we can calculate the distribution for a node by summing over all
hyper-edges that include the node.



Third (optionally), we may apply graph analyses to the
discussion graph, such as shortest-path, network centrality
and neighborhood finding algorithms; or machine learning
algorithms, such as clustering or classification algorithms to
the nodes and edges, and their annotations, within the graph.
In case study #1, we briefly show an example of how con-
textual statistics can be propagated to aid interpretation of
the results of a graph algorithm, and in case study #2, how a
discussion graph can be analyzed using spectral clustering.
We take advantage of abundantly available third-party tools,
such as R, to analyze our generated discussion graphs. We
leave full discussion of this third step outside the scope of
this paper, but suffice it to say that we have found the de-
rived discussion graphs to be an amenable representation for
both graph analyses and many machine learning algorithms.

Building the Base Discussion Graph What features
should be extracted from the social messages?

Let a social media corpus C be composed of a set of mes-
sages,M ≡ m1,m2, . . .. Each message m includes one or
more textual components, as well as metadata about the au-
thor, embedded links, etc. Each message mi is also identifi-
able by a unique identifier i.

A message is parsed by a set of low-level feature gener-
ator functions FD(m) = {fd(m)}d∈D, where each func-
tion fd(m) may (or may not) extract, derive, or uncover a
value for some feature domain d. A feature-node in the dis-
cussion hyper-graph is associated with each feature func-
tion that successfully produces a value and this node will
be uniquely identified by its domain and value. Depending
on the semantics of the relationship between a feature-node
and a message, we may sometimes say that a node was men-
tioned in, derived from, or related to the message, the mes-
sage’s author or the message’s metadata. Note that the same
feature-node may be related to multiple messages.

Each message in a social media corpus creates a hyper-
edge that connects all nodes derived from the message.
In aggregate, the resulting hyper-edges constitute a multi-
dimensional hyper-graph that gives a loss-less representa-
tion of all the features extracted from the corpus. Figure 1
shows a sample discussion graph extracted from two social
media messages.

Recall that the initial discussion hyper-graph is gener-
ated from the low-level feature functions FD on a single
message m ∈ M. Here, Nm denotes a set of nodes (fea-
ture values) extracted from the message m. Hence, Nm

is the union of output values produced by the functions
FD(m) = {fd(m)}d∈D. That is, fd(m) = nm ∈ Nm

iff fd(m) 6= null. All nodes produced by the same mes-
sage are interrelated on an equal footing and in that way de-
fines the hyper-edge em between all nodes in Nm. Hence,
Em = {em}. The initial hyper-edge will not have any asso-
ciated statistics, leaving Sm = ∅. We will see in the follow-
ing section that the mid-level projections will add statistics
to hyper-edges in the graph.

The initial discussion hyper-graph generated from the en-
tire corpus C is now defined as

“I had fun hiking tiger 
mountain last weekend” 
– Alice, Monday, 10am

“Hade a great day at 
Tiger Mountain!” –
Bob, Saturday, 7pm

Mood: Happy

Location: Tiger 
Mountain

ActivityTime:
{Sat-Sun}

Tweet ID:
9867

Gender: F

Activity: 
Hiking

Name: 
Alice

Tweet ID:
9867

Gender: M

Name: 
Bob

Figure 1: Example of a simple discussion showing relation-
ships between sentiment, location, activity, post, and a vari-
ety of user attributes, such as name and gender.

GC =
⋃

m∈M
Gm = (NC , EC , SC), (1)

where NC =
⋃

m∈MNm, EC =
⋃

m∈MEm, and SC =⋃
m∈M Sm = ∅. In the rest of this section, we will assume

we are operating on a fixed corpus and will therefore drop
the subscript C to simplify the notation.

Relate By What defines relationships?
By default, co-occurrence in a social media message de-

fines relationships in the initial discussion graph. That is, we
will only infer co-occurrence relationships among items that
co-occur in the same message. For many analyses, however,
we would like to generalize the notion of co-occurrence. For
example, we might want to infer relationships between lo-
cations based on the users who co-visit them. Or, we might
wish to infer relationships among items mentioned across
messages in a conversation. Normally, we will define this
relationship before our projection.

To do so, we declare a new relationship R, and transform
the hyper-graph by connecting all hyper-edges that share a
common instance of a node in the domain R, such that all
hyper-edges connected to a node Ri now become a single
hyper-edge. Note that in some cases, a hyper-edge may now
be connected to the same node multiple times. We simply
treat this as a weighted connection, for purposes of aggrega-
tion in future projections.

Projection What is the domain of relationships to extract?
In the context of a specific analysis or application, we of-

ten want to limit our structural analysis to the relationships
among nodes in a small number of domains. Informally, pro-
jecting a discussion graph down to those domains consists
of restricting the structure of the original graph to the given
domains, and aggregating all other domains in the original
discussion as contextual statistics to be associated with the
edges in the new, projected discussion graph.

More formally, a projection GD↓D′
from GD down to

GD′
, D′ ⊆ D is defined in two steps. First, a temporary

(improper) hyper-graph



Command Description
LOAD Specifies the social media corpus

being analyzed. Important selection
features, such as date ranges, are de-
clared here. DGT has native sup-
port for delimiter-separated text files
with user-specified schemas.

EXTRACT Specifies the set of feature extrac-
tors, including arguments, that will
be applied to the social media cor-
pus. A PRIMARY tag is a prelimi-
nary filter. Only hyper-edges includ-
ing a PRIMARY feature are included
in the resultant hyper-graph.

RELATE BY Specifies the domain that defines a
co-occurrence relationship.

PROJECT TO Create projections of the discussion
graph that focus on relationships im-
portant for a given analysis or appli-
cation goal.

OUTPUT TO Outputs the specified raw data or
discussion graph to a specified file
for analysis by R or other high-level
analysis tools.

Table 1: Basic script commands

GD⇓D′
= (ND⇓D′

, ED⇓D′
, SD⇓D′

)

is constructed by removing all nodes with domain D\D′

from the hyper-edges in ED. Notice that a restriction op-
eration may produce duplicate hyper-edges and therefore an
improper hyper-graph. For each restricted edge, eD⇓D′ ∈
ED⇓D′

, we augment the corresponding statistics as

sD⇓D′
= t ∪ sD

where t is the initial statistic for all the nodes that we re-
moved from the hyper-edge. These statistics are often just
a simple function of the values represented by the removed
nodes, but may, in cases, also functionally depend on the
current recorded statistics in the hyper-edge.

In the second step, the projection is finalized as the hyper-
graph

GD↓D′
= (ND↓D′

, ED↓D′
, SD↓D′

),

constructed by reducing the graph to include only unique
edges, such that

ED↓D′
= {eD↓D′

= e|e 6= f for e, f ∈ ED⇓D′
},

While reducing the graph to its unique edges, we also ag-
gregate the associated statistics of the reduced edges, using
a commutative and associative aggregator function.

Note that it is often the case that the initializer used in the
first step of the projection is ignored (i.e., produces the statis-
tic t = null). In this case the new statistics are therefore just
the continued aggregation of statistics from previous projec-
tions.

3.3 DGT and Example Usage
We implement the discussion graph data model in
the DGT and illustrate its use in two examples.
First, consider an analysis that involves the rela-
tionship between activities and locations — in other
words what people do (hiking or reading) and
where they do it (Yosemite Falls trail or the
Palo Alto library). For example, if we have many
tweets that mention both the activity “vacationing” and the
location “Hawaii”, we can build a discussion graph where an
edge connects the vacationing node with the Hawaii node.
This edge is then annotated with the contextual statistics
of the original tweets, such as the gender distribution of
tweet authors, the time-of-day the messages were posted,
and even the positive or negative sentiment expressed in
the tweets. The explicit representation of context allows us
to go deeper in analyzing and interpreting the relationship
between vacationing and Hawaii.

We write this example analysis using a succinct and easy-
to-read script, described in Table 1.

We will go into more detail on these specific feature ex-
tractors in Section 3.4 and the activity and location scenario
itself in Section 4.1. Suffice it to say that this analysis is
reading from a Twitter data source, then extracting refer-
ences to activities and locations, as well as several other fea-
tures. From these references, the analysis is creating a graph
of the relationships among all locations and activities (the
LocationActivity graph), and also creating a graph
of the relationships among locations alone (the Location
graph). The edges in the LocationActivity graph are
annotated with the conditional distributions of the other ex-
tracted features (the mood, gender, metropolitan area and
time distributions). For example, Figure 3 shows the mood
distribution associated with the vacationing node. The edges
in the Location graph are augmented with those distri-
butions as well as the activity distribution. Figure 4 shows
the strongest 4 relationships, as measured by pointwise mu-
tual information (PMI), between the vacationing activity
and various locations. In the figure, we have annotated each
of these relationships with the positive-negative sentiment
associated with vacationing at that location.

A key advantage of using a hyper-edge representation for
the relationships in our discussion graph is that we can rep-
resent and analyze complex relationships. For example, we
can decide to analyze the relationship between vacationing
and Hawaii conditioned on the gender of the tweet author. In
this case, we create a discussion graph that is projected onto
the 3 domains, location, activity, and also gender. Now, this
discussion graph will include two hyper-edges, one which
connects vacationing, Hawaii, and the male gender node,
and another which connects the activity and location with
the female gender node. The context associated with the for-
mer hyper-edge will include a statistical representation of
original discussion by men on this topic, and the context of
the latter shows us the statistical representation of the origi-
nal discussion by women. We can now quickly compare and
contrast to find the gender differences in sentiment, time,
word distributions, etc., that surround vacationing in Hawaii.

Once we have projected the discussion graph to a set of



LOAD Twitter(startdate:"9/15/12",
enddate:"10/15/12");

var g = EXTRACT
PRIMARY PhraseExtract(match:"locationlist.txt",

domain:"location"),
PRIMARY PhraseExtract(match:"activitylist.txt",

domain:"activity"),
MoodExtract(), GenderExtract(),
MetroAreaExtract(), TimeExtract(),

MessageId
FROM s;

PROJECT TO location, activity FROM g;
OUTPUT TO "LocationActivity.graph";

PROJECT TO location FROM g;
OUTPUT TO "Location.graph";

Figure 2: Script for the Location-Activity discussion graph.
By default, relationships are defined by co-occurrence in a
social message

Figure 3: The mood distribution associated with the vaca-
tioning activity.

relations we are most interested in, we can also apply more
sophisticated analyses to the results. For example, a cursory
examination of the mood distributions associated with ac-
tivity nodes in the LocationActivity graph shows us
that while the most common mood associated with activities
is joviality, some activities are associated strongly with both
joviality and guilt, such as eating and kissing, and would be
perhaps better characterized as “guilty pleasures”.

As a second example, we highlight how we can project
our discussion graph to “time” as a feature, in order to cap-
ture the dynamics of social media discussion. Figure 5 shows
an analysis script that extracts out the time-varying politi-
cal discussion associated with major politicians. The hyper-
edge between a politician and day will capture the distri-
bution of issues, sentiment, gender, etc., co-occurring with
mentions of the politician on each day. Figure 6 shows the
timeline of issues being discussed with mentions of Obama
in the weeks prior to the 2012 election.

3.4 Feature Extractors
Our framework supports an extensible set of feature extrac-
tors and aggregators, to facilitate the contribution and shar-

vacation

Hawaii

Martha’s 
Vineyard

Florida

Miami

687

197

252

386

3.63

4.10

4.67

4.24

number 
of

cooccurrences

association 
strength 

(PMI)

sentiment

Figure 4: The strongest 4 relationships between vacationing
and various locations, including the positive-negative senti-
ment context of each edge.

LOAD Twitter(startdate:"9/1/12",
enddate:"11/06/12");

EXTRACT
PRIMARY PhraseExtract(

match:"politicianlist.txt",
domain:"politician"),
Time(options:‘‘absoluteday’’),
PhraseExtract(

match:"issuelist.txt",
domain:"issue"),

MoodExtract(), GenderExtract(),
MetroAreaExtract(), TimeExtract();

PROJECT TO politician,absoluteday;
OUTPUT TO "PoliticianPerDay.graph";

Figure 5: Script for extracting a timeline summary of discus-
sions about politicians.

Figure 6: The distribution of selected issues co-mentioned
with Obama from Sep. 1-Nov. 6, 2012. The analysis script
in this case study equivalently extracts the timeline of senti-
ment, gender, and other summary statistics.

ing of new extractors. Each feature extractor is responsible
for analyzing a single message at a time and, for each mes-
sage, outputs zero or more detected, inferred or extracted
features in one or more domains. Feature extractors are writ-
ten as DLLs, adhering to a common API. Users can ex-
tend the system with additional feature extractors to ana-
lyze fields in the system’s canonical schema as well as ex-
tended fields in the schema of specific data sources. By de-



fault, the same feature extractor will run in both the single-
machine and distributed implementation of our framework,
though feature extractors may also be optimized indepen-
dently for different execution platforms if necessary for
achieving high performance. Some of the extractors that we
have built to date include: author statistics, tokens, time fea-
tures, hashtags, user mentions, phrase extractors, sentiment
extractor (De Choudhury, Gamon, and Counts 2012), entity
linking (Guo, Chang, and Kıcıman 2013), gender extrac-
tor (De Choudhury, Counts, and Horvitz 2013a), and home-
town extractor (Kıcıman 2012).3 Note that while we have
integrated feature extractors for some common condition-
ing contexts, such as gender, other common factors are the
topic of current research in the field (Kosinski, Stillwell, and
Graepel 2013; Mislove et al. 2011).

Aggregators are data-type-specific, though not feature-
specific, plug-ins to our framework. To date, we have built
1) a simple counting aggregator, appropriate discrete-valued
features such as gender or hashtag; and 2) a histogram ag-
gregator for continuous-valued features, such as time feature
or follower counts.

4 Case Studies
We present two case studies with the purpose of highlighting
the importance of the original contexts from which social
media is captured, and that conditioning on these contexts
can have substantial effects on an analysis. Exploring these
results fully can be onerous if the analyses are done manu-
ally. However, with tool support from a system like DGT ,
filtering and pivoting the data to explore different contexts
and even different kinds of relationships and relationship
contexts is a matter of only a minute or two of scripting.

First, we show how contextual information captured in the
discussion graph can be used to help interpret the higher-
level graph structures (pseudo-cliques). Our second case
study shows how higher-level analyses (inferred neighbor-
hood boundaries) vary based on the original context in
which social media was captured, with implications for how
we determine which contexts or combinations are “correct”.

4.1 Case Study #1: Context and Pseudo-Cliques
In this case study, we show how contextual information can
be propagated to help interpret the results of a higher-level
graph analysis on the relationships between co-mentioned
locations. People discuss locations (co-mention locations)
for many reasons. A person might mention two places be-
cause they are going to visit both together (e.g., “I am go-
ing to Fisherman’s Wharf and then the Ferry Building”); be-
cause the two locations are comparable in some way (e.g.,
“The Empire State Building and Burj Khalifa are both tall
buildings”); or even because two locations are dissimilar
(e.g., “I want to be in sunny Hawaii, but instead am freezing
in Anchorage!”). Given this variety, understanding why a set
of nodes are related to one another is challenging—the only
information we know is the existence of some relationship
between the nodes. By looking at the contextual statistics,

3The details of our more complex feature extractors are de-
scribed in detail in the cited prior work.

however, we can look for the commonalities in the nature of
the relationships among the nodes in the group to character-
ize the nature of the set as a whole.

To illustrate this point, we search for pseudo-cliques in
a discussion graph of locations to find closely related loca-
tions. We use the contextual statistics associated with the
edges in the clique to differentiate these pseudo-cliques.

Data Preparation: Location-Activity Discussion Graph
The first discussion graph consists of the relationships
among locations and activities. Using the script presen-
ted in Figure 2, we identify locations and activities men-
tioned in tweets, and extract other features, including gen-
der, time, metropolitan area and mood. We project our dis-
cussion graph to focus on the relationships among locations,
and use the other features as context.

We identify both locations and activities using exact
phrase matching. To do so, we build a database of locations
by extracting all Wikipedia articles that are marked with a
latitude and longitude, and hence typically represent places.
We treat the article title as the canonical name of the lo-
cation. We filter out names that are likely to be ambiguous
with common terms using information from a large Twitter
language model. The final dataset contains ˜ 580k locations.

We build our list of activities by mining search query logs
for carrier phrases that reliably identify activities. Examples
include patterns such as [where to go to *], [places for *ing],
and [*ing equipment], where * identifies the name of an ac-
tivity. This yields a wide variety of activities such as “jog-
ging”, “studying” and “clam digging”. We apply conjuga-
tion rules to the verbs and filter for ambiguities, resulting in
a set of over 16000 phrases for over 5400 distinct activities.

We apply our analysis to one month of English Twitter
data extracting all tweets that mention a location or activity,
with mood, gender, metropolitan area and time information.
We project the resultant raw hyper-graph down to two sepa-
rate discussion graphs: one is projected to the relationships
among locations and activities, while the other includes only
relationships among locations. Figure 2 shows the pseudo-
code for our analysis specification. The resultant discussion
graphs include 219,638 identified location nodes and 4595
identified activities.

Pseudo-Cliques Intuitively, a pseudo-clique is a set of no-
des that are densely connected together. The nodes essen-
tially form a clique with some small number of edges re-
moved. More formally, each pseudo-clique consists of a
maximal set of nodes C s.t., all nodes n ∈ C are connected
to at least α|C| other nodes in C. We use an approximate
pseudo-clique finding algorithm, and calculate the context
of each pseudo-clique as the aggregation of the normalized
statistical distributions of the edge contexts.

Results Figure 7 shows two pseudo-cliques found in our
dataset. Each of these represents a small group of locations
from NYC and the cliques share some overlap. The “Empire
State Building” and “Manhattan”, and “Midtown” location
are members of both cliques. Given the similar locations and
overlapping memberships, it is natural to question the se-
mantic meaning of these pseudo-cliques. Is there a reason to



Figure 7: Two pseudo-cliques in our Location discussion
graph.

New York Tourist Midtown Worker

Gender Male 49% 63%

Female 33% 23%

Metroarea NYC 33% 54%

Other 67% 46%

Mood Joviality 56% 49%

Fear 14% 13%

Sadness 11% 15%

Guilt 8% 6%

Fatigue 3% 6%

Serenity 3% 4%

Hostility 2% 4%

Figure 8: The context of the two cliques shown in Fig-
ure 7 helps us interpret the nature of the cliques. Based on
this context, we manually label the cliques as “New York
Tourist” and “Midtown worker”

believe these two sets of locations should be distinct?
To determine the answer, we look to the contexts associ-

ated with each pseudo-clique, shown in Figure 8: We find
that the pseudo-clique on the left represents a set of relation-
ships derived from discussions by primarily tourists, and the
right represents a set of relationships derived from discus-
sions by primarily local New Yorkers.

4.2 Case Study #2: Neighborhood Boundaries in
Context

In this section, we describe our case study on extracting
neighborhood boundaries based on user locations observed
in social media. In our previous example, we built pseudo-
cliques of locations based solely on co-mentions within the
text of tweets. In contrast, here we will use DGT to learn co-
visit relationships among geo-locations. We follow the basic
methodology outlined by the Livehoods project (Cranshaw
et al. 2012) to infer a relationship between locations based
on user co-visits.4 In addition, however, we use DGT to ex-

4Note that, because we are using a different kind of location
data, geo-located tweets instead of foursquare check-ins, as well
as differences in our clustering algorithm, we are not expecting to

LOAD Twitter(startdate:"1/1/13",
enddate:"3/31/13");

EXTRACT
PRIMARY GeoPoint(minlatlon:"40.6 -74.1",

maxlatlon:"40.9 -73.8"),
Time(options:"hourofday,dayofweek"),

userid;

// optionally FILTER to some context

RELATE BY userid;
PLANAR PROJECT TO ("geopoint");
OUTPUT TO "GeoRelationsByUser.graph";

Figure 9: Script for extracting relations between geo-
locations based on user co-visits

tract these relationships conditioned on a number of differ-
ent contexts, to see how much of a role various factors play.
We find that neighborhood boundaries indeed change sig-
nificantly from day to night, weekend to weekday and even
based on gender of the twitter user.

Data and Analysis From our organization’s archive of the
Twitter firehose, we extract all geo-located tweets in the
NYC area that occurred between January 1 and March 31,
2013, rounding the geo-location to 3 decimal places, result-
ing in 2.3M geo-located tweets. For each tweet, we extract
the hour of the day, the day of the week, and the gender and
userid of the author. We set our relationship context to be the
userid and project our discussion graph to the relationships
among geo-locations: two geo-locations are related based on
the number of common userids that have visited both geo-
locations. The DGT script for this extraction is shown in Fig-
ure 9. As in Livehoods (Cranshaw et al. 2012), we mix this
social distance with geographic distance to build a sparse
affinity matrix among locations, and cluster locations using
spectral clustering.

To test our hypothesis that the neighborhood boundaries
are sensitive to context, we repeat this extraction, adding one
line to the analysis to filter to tweets occuring during day-
time hours (7am-7pm), nighttime (7pm-7am) and weekends
(Sat,Sun), weekdays. We also produce an analysis based on
the context of gender. We generate neighborhood boundaries
for each set of inferred social relationships independently
and compare the results.

Results While there is some stability in the general pat-
tern of neighborhoods, we also find notable differences. The
neighborhood boundaries shift substantially in the midtown
area of Manhattan between the day and night (Figure 10): at
night, several neighborhood clusters south of Central Park
merge while some new clusters emerge in the very south
of Manhattan. Looking at weekend and weekday neighbor-
hoods (Figure 11) we see that the weekend clusters reveal
the 5th Ave shopping area as a distinct cluster, and show
a distinction between a northern Central Park cluster and
a neighboring Yorkville cluster that is not apparent during
the weekdays. The gender context (Figure 12) illustrates a

recreate the same neighborhoods as Livehoods.



Figure 10: Neighborhoods based on day (left) and night
(right) behaviors

Figure 11: Neighborhoods based on weekday (left) and
weekend (right) behaviors.

much stronger differentiation of neighborhoods in the mid-
town area, and a clear distinction between the Greenwich
Village and the Soho Shopping District for the female popu-
lation, whereas these distinctions are absorbed in larger clus-
ters in the male context.

To measure the relative impact of each of these three fac-
tors on the final clustering results, we apply a pair-counting
F0.5-measure to each set of conditioned clusterings, where
F = 0 indicates no similarity and F = 1 indicates identical
clustering assignments.5 We find that conditioning on week-
end vs. weekday has the largest effect (0.47); gender has the
second largest effect (0.54); and day vs. night has, relatively,
the least effect (0.67).

5 Discussion
Our cases studies highlight several benefits of incorporat-
ing contextual factors into social media analyses. First, they
support disambiguation. In the first case study, two pseudo-
cliques for locations emerged from the data derived from
geo-coded Twitter posts. Given their overlap in terms of the
locations themselves, the contextual factors shown in Figure
8 provide clues: The clique we labeled ‘New York Tourist’
because the members are predominantly not from the NYC

5As the pair-counting F-measure is not a symmetric measure
between two clustering assignments, we report the mean of the two
directional comparisons.

Figure 12: Neighborhoods based on gender (male on left,
female on right)
metropolitan area is more gender balanced and reflects more
positive mood than the ‘Midtown Worker’ clique. The con-
textual factors provide validation for the difference between
the two cliques. This means that locations in Manhattan are
clustered together in different graphs depending on the type
of person you are, which in turn is reflected in the contextual
factors of gender, metro area, and mood.

Second, the discussion graph framework allows the com-
bination of the strengths of social media data (geo-coding,
time-stamps) with more traditional person variables like
every day behavioral patterns (weekday/weekend) and gen-
der in order to develop more nuanced interpretations of re-
sults. As we saw in the second case study, neighborhood
boundaries shifted substantially when conditioned on these
different factors, even when using the identical boundary
drawing algorithm. In Figure 11 we showed that shopping
districts emerged on the weekends. Figure 12 shows sub-
stantial neighborhood differences for men and women, with
men splitting apart the neighborhood on the west side of
lower central park, but maintaining much larger neighbor-
hoods south of the park than do women. That is, the behav-
ioral patterns of men and women may be sufficiently differ-
ent to suggest different neighborhoods. These distinctions
suggest extensions to lines of research. In this case, we can
suggest that not only can neighborhoods be defined by be-
havior patterns, as in LiveHoods, but can be further refined
by contextual factors such as day of the week and gender.

6 Conclusions
Motivated by the importance of understanding how the con-
text of social media discussions affects the information we
extract from them, we designed and built a framework that
simplifies the specification and work required to deeply ex-
plore and condition results on context. To this end, we pre-
sented discussion graphs, a data model for co-occurrence
analyses, and DGT , our implementation. This data model
and implementation capture the computations and data rep-
resentations common to co-occurence analyses of social me-
dia data across many domains, and jointly represent the
structure and the context of relationships inferred from so-
cial media. Our goal is to take a step toward enabling the
type of conditional analyses typically employed in the social
sciences, while taking advantage of the unique properties of



social media data. Supporting these types of analyses will
allow us to understand important distinctions such as how
gender, time, and mood affect results, rather than simply av-
eraging over conditioning factors.

Through several examples and case studies, we show
how the discussion graph framework greatly simplifies the
task of building a social media analysis. This improved
agility has significant implications for social media research:
we demonstrate that high-level analysis results, such as in-
ferred neighborhood boundaries, depend on the context from
which social relationships were extracted,illustrating that
deeper analysis is necessary for truly understanding the in-
formation we extract from social media.

We expect to make our core system and feature extractors
available publicly soon, with the goal of spurring broader
and more complete investigations into social media analyt-
ics and insights into real-world phenomena and macro-level
social processes, such as propagation of social influence, ex-
pertise finding, crisis mitigation or public health.
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